Benha University	Time : 45 minutes
Faculty of Engineering (Shoubra)	High Voltage Engineering
Electrical Engineering Dept.	Third Year (Power)
30 March, 2013	Mid Term Exam.

Question One (10 points)

- A.Mention the various methods for electric field computation and discuss the importance of electric field computation. (3 points)
- **B.** State and explain Paschen's law. Derive expression for $(pd)_{min}$ and V_{min} . Assume A = 12, B = 365 and $\gamma = 0.02$ for air. Determine $(pd)_{min}$ and V_{min} . (7 Points)

Question Two (10 points)

- A.What is the difference between the Townsend creterion for breakdown in uniform and non-uniform field gap. (4 points)
- **B.** The following table gives two sets of experimental results for studying Townsend's mechanism. E is kept constant in each set. The minimum current observed is 6×10^{-14} A. **Determine** the values of Townsend's first and second ionization coefficients for each set.

I set 30 kV/cm Gap distance (mm)	II set kV/cm Observed current A	
	I set	II set
0.5	1.5×10^{-13}	6.5 × 10 ⁻¹⁴
1.0	5×10^{-13}	2.0×10^{-13}
1.5	8.5×10^{-13}	4×10^{-13}
2.0	1.5×10^{-12}	8×10^{-13}
2.5	5.6×10^{-12}	1.2×10^{-12}
3.0	1.4×10^{-10}	6.5 × 10 ⁻¹²
3.5	1.4×10^{-10}	6.5×10^{-11}
4.0	1.5×10^{-9}	4.0×10^{-10}
5.0	7.0×10^{-7}	1.2×10^{-8}